pH dependence and thermostability of lipases from cultures from the ARS Culture Collection

Ching T. Hou

Oil Chemical Research, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, USA

(Received 12 April 1993; accepted 10 April 1994)

Key words: Lipases; pH dependence; Thermostability

SUMMARY

Previously we used a simple, sensitive agar plate method to screen lipase activity from 1229 selected cultures including 508 bacteria, 479 yeasts, 230 actinomycetes and 12 fungi covering many genera and species. About 25% of the cultures tested were lipase-positive. These lipase-positive strains were further classified as good, moderate or weak enzyme producers. We have expanded our screening method to focus specifically on the pH dependence and thermostability of these lipase activities. The lipases exhibited various pH sensitivities and were divided into three groups: (i) lipases which are active at pH 5.5 but not at pH 7.5—produced by 36 bacteria, 23 yeasts and four actinomycetes; (ii) lipases which are active at pH 7.5 but not at pH 5.5 method to fungus; and (iii) lipases which are active at both pH 5.5 and pH 7.5—produced by 112 bacteria, 90 yeasts, 15 actinomycetes and five fungi. By screening at 60 °C and pH 9.0, we further identified 50 bacteria and 26 yeasts that produce thermostable alkali-tolerant lipases. Produce

INTRODUCTION

Lipases (3.1.1.3) catalyze the hydrolysis of triglycerides or acyl and aryl esters. They also are capable of catalyzing organic reactions in non-aqueous media [5]. Large quantities of microbial lipases are being produced on an industrial scale for medical and industrial uses. Lipases hydrolyze or synthesize triglycerides with positional and fatty acids specificities. For example, lipases from Aspergillus niger and Rhizopus delemar hydrolyzed/formed ester bonds only at positions 1 and 3 of glycerol [10]. In contrast, lipases from Geotricum candidum and Penicillium cyclopium hydrolyze or form ester bonds at all three positions [10]. For industrial hydrolysis, it is better that the reactants and products be liquid, and with many oils and fats a reaction temperature greater than 60 °C is required. Unfortunately, lipases that are both stable at greater than 60 °C and capable of extensive fat splitting are not available. The most effective lipase from Candida rugosa is inactivated at temperatures greater than 40 °C. In general, immobilized lipase increases enzyme thermostability. Lipase-catalyzed esterification processes have been commercialized by Unichema International (Gouda, The Netherlands) [2] for the production of high quality fatty esters, such as isopropylmyristate, isopropylpalmitate and 2-ethylhexylpalmitate, which are used as ingredients in skin creams and other personal care products. In these processes, the reactants are stirred at 50–70 $^{\circ}$ C in non-aqueous media with lipase immobilized on macroporous particles.

In recent years, interest in the use of enzymes as hydrolytic or synthetic chiral catalysts has risen rapidly. Extracellular microbial lipases are particularly suited for this application. Because of their availability, more than one dozen commercial lipases have been studied extensively by researchers in both industry and academe. For example, Sih et al. [9] studied several commercial lipases for the enantiospecific hydrolysis of 2-arylpropionic acid esters, an important class of nonsteroidal antiinflammatory drugs, and the aryl-thio-2S-methyl-propionic acid esters, key chiral intermediates for the synthesis of the antihypertensive agent captopril. Barton et al. [1] studied several commercial lipases for enzymatic resolution of phenoxy compounds such as (R,S)-2-(4-hydroxyphenoxy)propionic acids, valuable as intermediates in the production of certain herbicides. However, under most conditions, the enantioselectivity has not been high enough to permit economically useful production of the desired enantiomer.

Industry continues to look for economical sources of lipases and esterases with high activities. New lipases from microbial sources have been reported sporadically [6,8,11]. The need for novel lipases and esterases is obvious, but to our knowledge, no effort has been made or is being planned for conducting a large scale systematic screening for new lipases/esterases. At the National Center for Agricultural Utilization Research (NCAUR, Peoria, IL, USA) with the support of the Biotechnology Research and Development Corporation (Peoria, IL, USA), we had the opportunity to

Correspondence to: Dr Ching T. Hou, National Center for Agricultural Utilization Research, ARS/USDA, 1815 N. University Street, Peoria, IL 61604, USA.

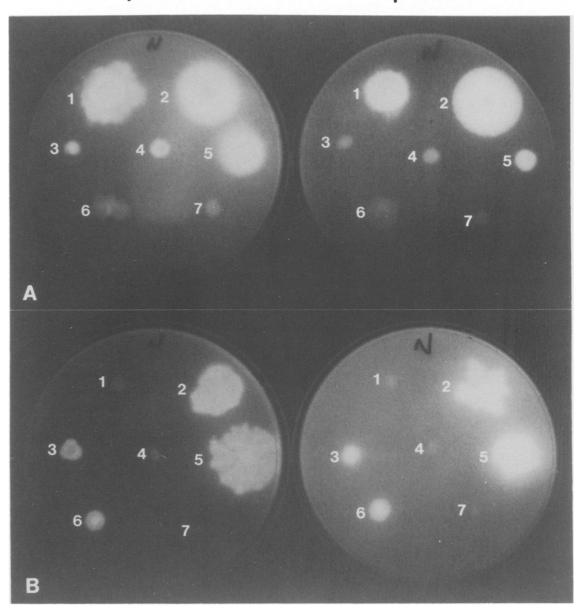


Fig. 1. Rhodamine B agar plate screen for lipase activity. (A) Yeasts: (1) Yarrowia lipolytica NRRL Y-1095; (2) Geotricum candidum NRRL Y-552; (3) Candida magnoliae NRRL Y-2024; (4) C. magnoliae Y-4226; (5) C. azyma NRRL Y-17067; (6) C. krusei NRRL Y-17013; (7) C. lambica NRRL Y-100. (B) Bacteria: (1) Pseudomonas acidovorans NRRL B-783; (2) Ps. fluorescens NRRL B-1800; (3) Ps. fluorescens NRRL B-1796; (4) Ps. acidovorans NRRL B-819; (5) Ps. myxogenes NRRL B-2086; (6) Ps. fluorescens NRRL B-1882; (7) Ps. putida NRRL B-2024.

conduct a large scale screening for lipase and esterase activity with cultures in the ARS Culture Collection (Peoria, IL, USA).

We previously used a modified rhodamine B agar plate method [4,7] to screen lipase activity in 1229 selected cultures covering many genera and species of bacteria, yeasts, actinomycetes, and fungi. About 25% of the cultures screened were lipase-positive. Some of these lipases also function as esterases, stereospecifically hydrolyzing 2ethylhexyl butyrate to produce S(+)2-ethylhexanol [3]. Now we have expanded our screening methods to focus specifically on the pH dependence and thermostability of these lipase activities. Surprisingly, we found many organisms that express lipase activity only under acidic, neutral or alkaline conditions. Many thermostable alkali-tolerant lipases also were identified. This paper presents the results of our screening operation.

TABLE 1

Microorganisms that produce lipases active at pH 5.5 but not at pH 7.5 $\,$

Microorganisms	NRRL number	
YEASTS		
Candida ancudensis	Y-17327	
Candida antarctica	Y-7954	
Candida atmospherica	Y-5979	
Candida bombi	Y-17081	
Candida buffonii	Y-17082	
Candida cacaoi	Y-7302	
Candida chilensis	Y -17141	
Candida geochares	Y-17073	
Candida lipolytica	Y-2178	
Candida magnoliae	Y-2024, Y-2333, YB-4226,	
0	Y-7621, Y-7622	
Candida maritima	Y-7899	
Candida salmanticensis	Y-17090	
Candida savonica	Y-17077	
Pichia glucozyma	YB-2185	
Pichia musicola	Y-7006	
Pichia petersonii	YB-3808	
Pichia silvicola	Y-1678	
Pichia sydowiorum	Y-7130	
Saccharomycopsis fibuligera	Y-12677	
ACTINOMYCETES		
Unknown name	B-12699	
Chainia purpurogena	B-2952	
Streptomyces aureus	B-16044	
Streptomyces flavovirens	B-2685	
BACTERIA	D 1/07	
Alcaligenes faecalis	B-1695	
Bacillus amyloliquefaciens	B-207	
Bacillus megaterium	B-1827, B-1851, B-352, B-47	
Bacillus subtilis	B-554	
Pseudomonas acidovorans	B-980	
Pseudomonas aeruginosa	B-23, B-248, B-79, B-27	
Pseudomonas chlororaphis	B-1869, B-2075	
Pseudomonas fluorescens	B-1608, B-1897, B-258,	
	B-2640, B-97	
Pseudomonas fragi	B-955	
Pseudomonas myxogenes	B-2108	
Pseudomonas putida	B-1245, B-13, B-2023, B-2174,	
	B-2336, B-254, B-805, B-931,	
	B-2079, B-8	
Pseudomonas putrifaciens	B-9517	
Pseudomonas reptilovora	B-6, B-712	
Pseudomonas syncyanea	B-1246	
Pseudomonas viscosa	B-2538	

MATERIALS AND METHODS

Microorganisms

All microbial cultures were obtained from the ARS Culture Collection at NCAUR. Bacteria were grown at $30 \,^{\circ}$ C and pH 5.5, 7.5 or 9.0 on TGY medium which

TABLE 2

Microorganisms that produce lipases active at pH 7.5 but not at pH 5.5

Microorganisms	NRRL number	
YEASTS		
Pichia alni	Y-11625	
Pichia membranaefaciens	Y-1513	
Pichia meyerae	Y-12777	
Saccharomycopsis crataegensis	YB-192	
BACTERIA		
Altermonas spp.	B-956, B-973	
Bacillus amyloliquefaciens	B-1466, B-2613	
Bacillus circulans	B-383	
Bacillus megaterium	B-938	
Pseudomonas aeruginosa	B-221	
Pseudomonas chlororaphis	B-1541, B-1632	
Pseudomonas fragi	B-2316, B-73	
Pseudomonas myxogenes	B-2105	
Pseudomonas perolens	B-1123	
Pseudomonas reptilovora	B-1961	
Pseudomonas septica	B-1963, B-2082	
Pseudomonas stutzeri	B-775	
ACTINOMYCETES		
Rhodococcus rhodochrous	B-16562	
Streptomyces albus	B-2380	
FUNGUS		
Penicillium citrinum	6336	

contained (per liter): tryptone, 5 g; yeast extract, 5 g; dextrose, 1 g; K_2HPO_4 , 1 g. Yeasts, actinomycetes, and fungi were grown at 25 °C and at pH 5.5, 7.5 or 9.0 on PDA medium which contained (per liter): 26 g PDA (Difco Lab, Detroit, MI, USA). For preparing agar plates, 10 g agar was added into the above mentioned media.

Chemicals

Commercial lipases (triacylglycerol lipases, EC 3.1.1.3) were purchased from Sigma Chemical Co. (St Louis, MO, USA). Rhodamine B and soybean oil were purchased from Sigma Chemical Co. Thin-layer precoated Kieselgel 60 F_{254} plates were obtained from EM Science (Cherry Hill, NJ, USA). All other chemicals were reagent grade and were used without further purification.

Lipase activity screen

Media were autoclaved and cooled to about 60 °C, after which for each liter of medium, 30 ml of filter-sterilized soybean oil and 2 ml of filter-sterilized aqueous solution of rhodamine B (0.1%) were added with vigorous shaking. After the agar medium was allowed to stand for 10 min at 60 °C to reduce foaming, 20 ml of the medium was poured into sterile petri plates. Cultures were inoculated from an agar slant as a small spot on the screening agar plate and incubated at 30 °C for bacteria and 25 °C for yeasts,

TABLE 3

Microorganisms that produce lipases active at both pH 5.5 and 7.5

licroorganisms	NRRL number	Microorganisms	NRRL number
EASTS			
Candida apicola	Y-2481, Y-5391	ACTINOMYCETES	
Candida azyma	Y-17067	Unknown name	B-7659, F-4209
Candida boleticola	Y-17080	Chainia poonensis	B-2319
Candida bombicola	Y-17069	Chainia violens	B-3483
Candida dendrica	Y-7775	Geosmithia ladendula	B-13026, B-2014, B-895
Candida entomaea	Y-7785	Nocardia gibsonii	B-2592
Candida entomophila	Y-7783	Streptomyces aculentosporus	B-11397
· A	Y-12941	Streptomyces academosporus Streptomyces afghaniensis	B-5621
Candida ernobii		Streptomyces albogriseolus	B-16393
Candida freyschussi	Y-7898		
Candida fusiformata	Y-17173	Streptomyces aureus	B-1941
Candida hellenica	Y-17319, Y-6591	Streptomyces capoamus	B-3632
Candida humicola	Y-1266, Y-12944	Streptomyces carneus	B-2001
Candida homilentoma	Y-10941	Streptomyces griseus	B-2027
Candida insectamans	Y-7786	FUNGI	
Candida kruisii	Y-17086	Penicillium citrinum	2140, 3754, 5907
Candida lipolytica	Y-6795	Penicillium funiculosum	13095, 6014
Candida lusitaniae	Y-7940	BACTERIA	
Candida magnoliae	Y-680		D 14002
Candida maltosa	Y-5704	Arthrobacter terregens	B-14092
Candida melinii	Y-1514, Y-1782, Y-2326	Bacillus amyloliquefaciens	B-1470, B-448
Candida methylica	Y-17325	Bacillus megaterium	B-1367, B-1370, B-3254
Candida mucilagina	Y-11823	Bacillus pumilus	B-208, B-3480, B-3481, N-309,
Candida naeodendra	Y-10942		B-307, N-307
Candida nodaensis	Y-2484	Bacillus subtilus	B-359, B-361, B-364, B-209,
			B-360, B-542
Candida norvegica	Y-6700	Pseudomonas aeruginosa	B-12, B-184, B-1852, B-211,
Candida oregonensis	Y-5850	_	B-217, B-219, B-220, B-247, B-24
Candida parapsilosis	Y-7629, Y-7659		B-250, B-256, B-257, B-26, B-264
Candida philyla	Y-7776		B-265, B-275, B-282, B-323, B-34
Candida quercitrusa	Y-5392		B-3509, B-3748, B-4014, B-450,
Candida quercuum	Y-12942		B-451, B-452, B-534, B-7, B-771
Candida santamariae	Y-6656	Pseudomonas acidovorans	B-979
Candida silvanorum	Y-7782	1	
Candida silvicola	Y-6052, YB-2846	Pseudomonas antimycetica	B-1683
Candida silvicultrix	Y-7789	Pseudomonas chlororaphis	B-1097, B-1870, B-2019, B-560,
Candida spp.	Y-490, YB-2064, YB-599		B-2266, B-561
Candida tanzawaensis	Y-17324	Pseudomonas fluorescens	B-1105, B-1244, B-1603, B-1609,
Geotrichum candidum	Y-552		B-1612, B-1636, B-1796, B-1799,
Pichia abadieae	Y-7499		B-1800, B-1882, B-189, B-1944,
			B-1964, B-2322, B-2458, B-2547,
Pichia americana	Y-2156, YB-2444		B-4290, B-538, B-804
Pichia anomala	Y-366, Y-993	Pseudomonas fragi	B-2771
Pichia bimundalis	Y-5343, YB-2805	Pseudomonas marginata	B-955
Pichia bispora	Y-1482, Y-11610	Pseudomonas mexicana	B-4222
Pichia canadensis	Y-1888, Y-2340	Pseudomonas mucidolens	B-18
Pichia dryadoides	Y-10990	Pseudomonas myxogenes	B-2086, B-2106, B-2107,
Pichia euphorbiophila	Y-12742, Y-12743	1 setutomonus myxogenes	B-2109
Pichia fabianii	Y-1871, Y-1873	Psaudomonas nonliguafaciona	B-2109 B-1023, B-993
Pichia hampshirensis	YB-4128	Pseudomonas nonliquefaciens	,
Pichia holstii	Y-2155, Y-7914	Pseudomonas pavonacea	B-724
Pichia insitovora	Y-12698	Pseudomonas putida	B-1487
Pichia lynferdii	Y-7723	Pseudomonas reptilovora	B-2017, B-2018, B-2021,
Pichia mexicana	Y-11818, Y-11819		B-2845, B-2846, B-2847,
Pichia minuta	Y-10948		B-713, B-81, B-89, B-964,
	Y-11748, YB-1294		B-965
Pichia mississippiensis	Y-7005	Pseudomonas resinovorans	B-2649
Pichia muscicola		Pseudomonas riboflavina	B-949
Pichia nakazawae	Y-7904	Pseudomonas saccharophila	B-628
Pichia rabaulensis	Y-11533	Pseudomonas seminum	B-2742
Pichia silvicola	YB-3086	Pseudomonas septica	B-2081, B-1962
Pichia toletana	YB-4247	Pseudomonas spp.	B-1878, B-1880, B-1794,
Pichia veronae	Y-7818	- comonional opp.	B-1878, B-1880, B-1794, B-1881
Pichia xylosa	Y-12929, Y-12939, Y-5987,	Pseudomonas suis	B-915, B-927
	YB-3884, YB-3887		
Saccharomycopsis crataegensis	Y-5902	Pseudomonas tolaasii Pagudomonga viridilivida	B-991
Saccharomycopsis lipolytica	YB-423	Pseudomonas viridilivida	B-893
Trichosporon spp.	Y-1489, YB-4547	Pseudomonas viscosa	B-1302
Wickerhamiella domercqiae	Y-6698	Unknown name	B-3281
Yarrowia lipolytica	Y-1095		
Zygosaccharomyces fermentati	Y-17056	1	

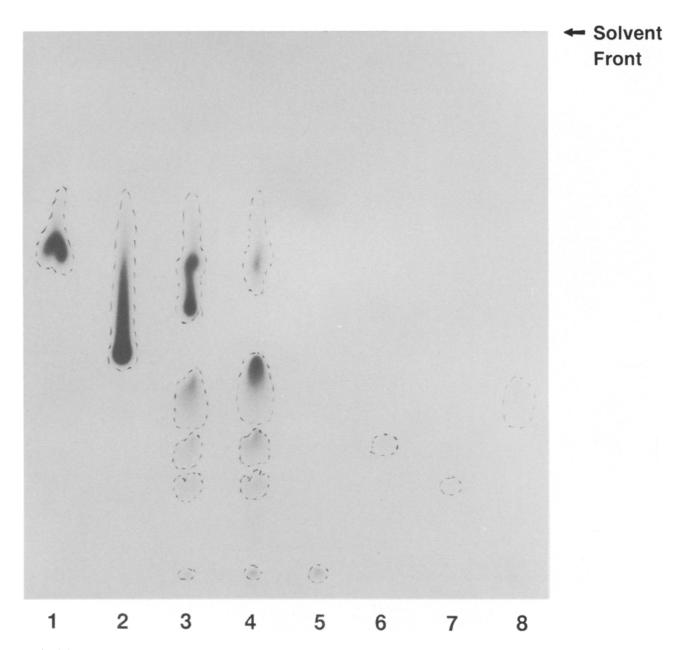


Fig. 2. Thin-layer chromatography of lipase hydrolysis products. Two-stage development procedure in one dimension: (A) benzene, ether, ethyl acetate, acetic acid (80:10:10:1 v/v/v/v); (B) hexane, ether, formic acid (80:20:2 v/v/v). Spots with dotted lines were visualized with iodine vapor. The spot in lane 7 showed as a white spot over a brownish background. (1) soybean oil; (2) soybean oil plus a lipase-negative strain (*Pseudomonas acidovorans* NRRL B-873); (3) soybean oil plus a Sigma lipase (type II from porcine pancreas); (4) soybean oil plus a lipase-positive strain (*Pseudomonas myxogenes* NRRL B-2106); (5) 1-mono-oleoyl-rac-glycerol; (6) 1,3-diolein; (7) 1,2-distearyl-rac-glycerol; (8) oleic acid.

actinomycetes, and fungi. Lipase activity was identified on the plate as an orange fluorescent halo around the colonies after 48 h of incubation. As a control, various quantities of a commercial pancreatic lipase were assayed with this screening plate. Sizes of their orange fluorescent halo correlated well with lipase activities [4]. For screening at $60 \,^{\circ}$ C and pH 9.0, a few drops of sterile water were added to the inside of the petri cover plate. The inner plate with agar medium was placed on top of the cover plate to reduce drying of the agar medium. The petri plates also were sealed with tape to further prevent the drying process during incubation.

Identification of lipase hydrolysis products

A 1-g portion of filter-sterilized soybean oil was added to a 1-day-old culture of either a lipase-negative strain

Microorganisms that produce lipases active at pH 9 at 60 °C

Microorganisms	NRRL number	
YEASTS		
Candida fennica	Y-7505	
Candida rugopelliculosa	Y-17079	
Candida sake	YB-1132	
Candida silvicola	YB-2846, Y-6052	
Candida sorbophila	Y-7921	
Candida utilis	Y-7586	
Issatchenkia orientalis	Y-7550	
Pichia abadieae	Y-7499	
Pichia alni	Y-11627	
Pichia fabianii	Y-1873, Y-1871	
Pichia guilliermondii	Y-2075	
Pichia hampshirensis	YB-4128	
Pichia inositovora	Y-12698	
Pichia mississippiensis	YB-1294	
Pichia nakazawae	Y-7904	
Pichia rabaulensis	Y-11533	
Pichia silvicola	YB-3086	
	Y-12939	
Pichia xylosa Saecharomyconcis linelytica	YB-423	
Saccharomycopsis lipolytica		
Torulaspora globosa	Y-1982 N 12606	
Williopsis pratensis	Y-12696 Y-7260, Y-7258	
Zygosaccharomyces bailii Zygosaccharomyces rouxii	Y-998	
BACTERIA		
Altermonas sp.	B-808	
Bacillus brevis	NRS-603	
Bacillus firmus	NRS-854	
Bacillus licheniformis	NRS-12648	
Bacillus pumilus	B-14292, N-331	
Bacterium indoloxidans	B-1038	
Leuconostoc dextranicum	B-1420	
Micrococcus luteus	B-1106, B-4375	
Micrococcus spp.	B-1018, B-476, B-555	
Pseudomonas acidovorans	B-802	
Pseudomonas aeruginosa	B-184, B-211, B-218,	
i scuuomonus acragnosa	B-219, B-221, B-23, B-248,	
	B-215, B-226, B-257, B-	
	264, B-265, B-27, B-282,	
	B-323, B-325, B-771	
Pseudomonas chlororaphis	B-2019, B-977	
Pseudomonas fluorescens	B-2019, B-977 B-11, B-1799, B-804	
-	B-11, D-1799, D-604 B-727	
Pseudomonas fragi Pseudomonas mephitica	B-727 B-75	
Pseudomonas mepnilica Pseudomonas mucidolen		
	B-18 B 2105 B 2106 B 2107	
Pseudomonas myxogenes	B-2105, B-2106, B-2107	
Pseudomonas nonliquefaciens	B-995 B-2017 B-712 D-81	
Pseudomonas reptilovora	B-2017, B-713, B-81	
Pseudomonas ribis	B-160	
Pseudomonas riboflavina	B-949	
Pseudomonas viridilivida	B-893, B-895	

(Pseudomonas acidovorans NRRL B-783) or a lipase-positive strain (Pseudomonas myxogenes NRRL B-2106) grown on 30 ml TGY medium at 30 °C and incubation was continued for an additional three days. In the case of commercially available lipase, 100 lipase units of Sigma lipase II (from porcine pancreas) were added to 10 ml 0.05 M sodium phosphate buffer solution (pH 7.5) containing 0.3 g soybean oil and incubated at 37 °C for 24 h. At the end of the incubation, the reaction mixture was acidified with dilute HCl to pH 2 and extracted twice with an equal volume of diethyl ether. The ether extract was concentrated using a rotary evaporator and analyzed by TLC. TLC plates were developed with a two-stage development procedure: (A) benzene, ether, ethyl acetate, acetic acid (80:10:10:1, v/v/v/v), development finished when solvent was 10 cm above the origin; (B) hexane, ether, formic acid (80:20:2, v/v/v), development in the same direction to top of the TLC plate. After development, products on the plate were identified first by exposure to iodine vapor and then by spraying with 60% aqueous sulfuric acid and charring.

RESULTS

Typical results of lipase screening operations on yeasts and bacteria are shown in Fig. 1(A) and 1(B), respectively. It is easy to identify the orange fluorescent haloes characteristic of lipase activity and thereby identify strains producing lipases. A total of 1229 cultures including 508 bacteria, 479 yeasts, 230 actinomycetes and 12 fungi were screened at pH 5.5, 7.5 and 9.0. The genera and species of these cultures were reported previously [4].

Among the 1229 cultures screened, 168 bacteria, 119 yeasts, 22 actinomycetes and six fungi were lipase-positive. The lipases from these positive strains behaved differently in different pH environments. As listed in Table 1, lipases from 36 bacteria, 23 yeasts and four actinomycetes were active at pH 5.5 and inactive at pH 7.5. Lipases from 17 bacteria, four yeasts, two actinomycetes and one fungus were active at pH 7.5 but not at pH 5.5 (Table 2). One hundred and twelve bacteria, 90 yeasts, 15 actinomycetes and five fungi produced lipase activity at both pH 5.5 and 7.5 (Table 3).

Lipase activity was confirmed by analyzing the products of incubation of soybean oil with a lipase-positive organism. When soybean oil was incubated with the lipase-positive strain, *Pseudomonas myxogenes* NRRL B-2106, hydrolysis products were generated consisting of diglycerides(1,2- and 1,3-), monoglycerides, and free fatty acids similar to those obtained by commercially available lipase (Fig. 2). The lipase-negative strain, *Pseudomonas acidovorans* NRRL B-783, did not hydrolyze soybean oil. Thus, our screening method was correct in identifying lipase-producing strains.

Since there is industrial need for thermostable alkaline lipases, we also conducted our screen at 60 $^{\circ}$ C with the pH of the screening media at 9.0. Many cultures cannot grow under these conditions. However, among those grown, as listed in Table 4, 50 bacteria and 26 yeasts produced thermostable alkali-tolerant lipases. Classification of these

lipases according to their positional-, fatty acid- or chiral specificities will require further studies. Because the applications of lipases vary, further classification of these lipases must be left to the individual scientist. Nevertheless, the data presented here provide important information regarding previously unknown sources of lipases which might lead to discovery of new lipases suitable for industrial applications.

DISCUSSION

Lipases are important biocatalysts in biochemical reactions. In industry, the selection of the most appropriate lipase for a particular use is a vital concern and the existence of numerous microbial lipases encourages us that one may find the proper lipase for a given purpose. This is an additional reason why microorganisms are much more preferable as lipase sources than are animals or plants. The needs for novel lipases are obvious. We have screened 1229 cultures covering many genera and species in yeasts, bacteria, actinomycetes, and fungi. About 25% of these cultures possess lipase activity. These lipase activities were further identified as enzymes which were active at pH 5.5, at pH 7.5, or at both conditions. We also conducted our screen at 60 °C, pH 9.0 to identify thermostable alkali-tolerant lipases, and 50 strains of bacteria and 26 strains of yeasts showed lipase activity under these conditions. However, we are not able to distinguish whether the lipolytic activity detected here is due to pH-dependent lipase synthesis or pHdependent lipase activity. It also is possible that this activity is due to synthesis of multiple lipases and our methods cannot differentiate single from multiple lipase synthesis. Product analyses confirmed our screening results (Fig. 2). Our data provide important first step information for the selection of a proper lipase for a given purpose. Screening of microorganisms, with almost limitless forms existing in nature, offers a fertile approach for discovering novel lipases.

ACKNOWLEDGEMENTS

I thank Ms Trina Johnston and Julie Hollenback for their excellent technical assistance and Drs C.P. Kurtzman, L.K. Nakamura and D.P. Labeda of ARS Culture Collection for providing microbial cultures.

This work was supported by BRDC Grant No. 1-4-036.

REFERENCES

- 1 Barton, M.J., J.P. Hamman, K.C. Fichter and G.J. Calton. 1990. Enzymic resolution of (*R*,*S*)-2-(4-hydroxyphenoxy)propionic acid. Enzyme Microbiol. Technol. 12: 577–583.
- 2 Casy, J. and A. Macrae. 1992. Biotechnology and the oleochemical industry. Inform 3: 203-207.
- 3 Hou, C.T. 1993. Screening of microbial enzyme for asymmetric hydrolysis of 2-ethylhexyl butyrate. J. Ind. Microbiol. 11: 73-81.
- 4 Hou, C. T. and T. Johnston. 1992. Screening of lipase activities with cultures from ARS Culture Collection. J. Am. Oil Chem. Soc. 69: 1088–1097.
- 5 Klibanov, A.M. 1986. Enzymes that work in organic solvent. Chem. Technol. 16: 354–359.
- 6 Kokusho, Y., H. Machida and S. Iwasaki. 1982. Studies on alkaline lipase: isolation and identification of lipase producing microorganisms. Agric. Biol. Chem. 46: 1159–1164.
- 7 Kouker, G. and K.E. Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53: 211–213.
- 8 Machida, H., T. Higashi and Y. Kokusho. 1984. Industrial production and application of microbial lipases. Nippon Nogei Kagaku Kaishi 58: 799–804.
- 9 Sih, C.J., Q.-M. Gu, G. Fulling, S.-H. Wu and D.R. Reddy. 1988. The use of microbial enzymes for the synthesis of optically active pharmaceuticals. Dev. Ind. Microbiol. 29: 221–229.
- 10 Tsujisaka, Y. and M. Iwai. 1984. Comparative study on microbial lipases. Kagaku To Kogyo 58: 60–69.
- 11 Wang, Y.-X., K.C. Srivastava, G.-J. Shen and H.Y. Wang. 1991. Novel thermostable alkaline lipase from a new thermophilic *Bacillus* strain A30-1. Abstract F8. Am. Oil Chem. Soc. Annual Meeting, Chicago, IL, USA.